【学术报告】Bayesian adaptive lasso for the generalized Poisson hurdle model
报告人:左国新(华中师范大学)
时 间:2025年11月21日10:30
地 点:海韵园实验楼S207
内容摘要:
Variable selection is important in statistical inference. In health economics and management, count outcomes are frequently encountered and often have a large proportion of zeros, and these data change the relation between mean and variance in the Poisson distribution setting. In this talk, for the generalized Poisson hurdle model, which can flexibly fit zero-inflated data with dispersion characteristics, we propose a Bayesian adaptive lasso method to conduct a simultaneous variable selection and parameter estimation. Efficient MCMC methods are applied to carry out posterior sampling and inference. Moreover, we investigate the finite sample performance of the proposed method through a simulation study and apply it to analyze real-life data about doctor visits.
个人简介:
左国新, 华中师范大学数学与统计学院教授、副院长,兼任中国现场统计学会资源与环境分会常务理事,中国商业统计学会常务理事。主要从事应用统计、统计计算及生存分析等方面的研究,2001-2002年曾在香港中文大学参与合作研究,研究内容包含生存分析和秩数据分析等方面。2007年在香港中文大学获得统计学博士学位(导师:顾鸣高教授)。2010-2011年在美国Rochester大学从事博士后研究,期间参与了美国NIH资助项目“Analysis of count data with structural zeros: CTN0018 and CTN0019”,对离散数据的分析和相应的半参数模型的推断问题有一些研究。目前主要从事非参数/半参数回归模型的统计推断及复杂数据的统计分析。在Lifetime data analysis、Communication in Statistics, Theory and methods、 Journal of Nonparametric Statistics、Journal of Statistical Planning and Inference、Suicide and Life-Threatening Behavior等杂志发表论文30余篇,主持和参与国家自然科学基金面上项目及科技部项目多项。
联系人:王海斌