【学术报告】Gradient estimates on Finsler metric measure spaces
报告人:沈斌(东南大学)
时 间:2025年12月8日10:30
地 点:海韵园行政楼C503
内容摘要:
In this talk, we will discuss the gradient estimates for positive solutions of elliptic or parabolic equations on Finsler metric measure spaces, including the results on Riemannian manifolds and graphs. We will compare the curvature conditions, the conclusions, and their applications for the two commonly used methods of gradient estimates, based on the manifold topology, equation types, and the form of nonlinear operators. The equations involved include the heat equation, linear Schrödinger equation, Lichnerowicz equation, p-, (p,q)-, and polynomial-type Laplace equations, fast diffusion equation, and porous medium equation, etc.
个人简介:
沈斌,东南大学数学科学学院副教授。主要从事微分几何中的Finsler几何和黎曼几何上的几何分析相关问题的研究,研究成果发表在Manuscripta Mathematica,Differential Geometry and its Applications,Journal of Geometry and Physics等数学期刊。
联系人:杨波